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On the compressible Heisenberg chain 

Rodrigo Ferrert 
Dipartimento di Fisica, Universith di Genova, 16146 Genova, Italy 

Received 21 March 1988 

Abstract. It is shown via the coherent state formalism for magnetic and elastic states 
that small-amplitude non-linear excitations of the magnetic modes induce solitary wave 
excitations of the elastic modes. 

The study of the effect of non-linear magnetic excitations on the elastic modes in the 
compressible Heisenberg chain [ 11 has attracted increasing interest during this decade. 
In [2] the complete integrability of the compressible Heisenberg chain in the continuum 
limit was shown and it was concluded that magnetic solitons lead to kink-like excitations 
of the elastic degree of freedom. In [3] the classical continuum limit was investigated and 
the equations of motion deduced. On the ground of these equations, the existence of 
magnetic solitary waves, coupled with simultaneous travelling deformations of the 
lattice, was proved [4]. Deficiencies of the approach in [2] were discussed in [5] .  
Equations of motion have also been deduced [6] using the method of functional 
integration. The influence of spin-phonon interaction on the soliton creation in the 
compressible Heisenberg chain has been considered using the Glauber representation 
of coheren spin states [7] in the limit of small spin-wave densities, thereby demonstrating 
that solitonic excitations are dominated by non-linear effects arising from spin-spin 
interaction. 

To investigate the general dependence of the non-linear excitations on the internal 
parameters, we have used the coherent state representation for the spin and elastic states 
of the compressible Heisenberg chain in the continuum limit. We have deduced and 
solved the low-amplitude non-linear equations of motion describing simultaneously the 
dynamics of the spins and of the magnetic ions. 

The Hamiltonian describing the compressible chain is 

where Xmag represents the magnetic degrees of freedom and has the form 

with J the nearest-neighbour exchange interaction, a the lattice parameter, g the g- 
factor, ,uB the Bohr magneton and H t h e  intensity of an external magnetic field applied 
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in the z direction; D > 0 is the anisotropy parameter which tends to keep the spin S, on 
site n parallel to the field. 

%ph represents the elastic modes and is given by 

with qn the displacement from the equilibrium position of the magnetic ion at site n in 
the absence of spin-phonon interaction; m is the mass and k is the elastic constant. p n  
are the corresponding moments. 

The last term Xint represents the first-order coupling between magnetic and elastic 
modes and takes the form 

where A = dJ/dx is the exchange striction parameter. 

iltonians (2)-(4) in the more tractable forms 
On the basis of a long-wavelength limit emerges the possibility of writing Ham- 

X,,,,,, = -;I dx(J[S'(x)S-" (x) + S-(X)S'"(X)] + S z ( ~ ) S z r f ( ~ ) }  J 
- D dx  [S'(X)]* - h dx S"(X) - +lVIS2 I 

Xint = -2h dx q'(x){J[S'(x)S-' (x) + S-(X)~"(X)] J 
+ Sz(x)Szf (x)} - AS2 J dx q"(x) (7) 

where h = gpBHO and the chain direction is the x axis. Throughout this paper the prime 
denotes d/dx. The distance a between the spins defines the length unit. 

The ground-state ( T  = 0) configuration of this system corresponds to all the spins 
aligned in the z axis direction and the ions in their equilibrium positions. To study non- 
linear excitations of the coupled system, we consider non-linear excitations of the 
magnetic modes, performing a third-order Holstein-Primakoff transformation of the 
spin operators 

s y x )  = m[1 - a'(x)a(x)/4S]a(x) 

s-(x) = VBa+(x) [1 -  ayx)a(x)/4s] 

SZ(X) = s - a+(x)a(x). 

For the operatorsp(x) and q(x), we take the usual representation 
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The time dependence of the annihilation operators b(x )  and a(x) are given by 
(5  = 1) 

ib(x, t )  = [b(x,  t ) ,  X] iu(x, t )  = [a(x, t ) ,  X ]  (10) 

where dots denote a / a t .  
Replacing equations (8) and (9) in the Hamiltonian (l), and keeping terms to the 

fourth order in the bosonic operators, we get from equation (10) the following system 
of two non-linear differential equations: 

id = -(w/2)(b’ - b)  - (k/mw)(bt” + b”)+ ( A / 6 ) ( a t a ”  - a’”a) 

- (A/V?GE[(b’” + b”)a + 2(b” + b ’ ) ~ ‘ ] .  

(11) 

(12) 

iu = -(J/2)(2Sa‘ + a”a2 + 2ai’a‘a - utar2 )  + [D(2S - 1) + h]a - 2Daia2 

We define now the state of the chain by 

where 

These states are eigenstates of the operator b with eigenvalue /3. A semi-classical 
approach allows us to consider that the projections of the spins can be continuously 
distributed along the z axis; these states are then eigenstates of the operator a with 
eigenvalue CY. So we write 

b(x) I4 = P(x> I 4x1 14) = 4 x 1  14). (15) 

For the system in the state lap), we can find the equations for the averages 
( c Y ~ ~ I ~ I c Y ~ )  and (aplu1ap)using equations (11) and (12).  From this, we obtain 

For A = 0, equation (16) corresponds to a sound wave equation with q(x,  t )  = 0 as a 
particular solution, and equation (17) is the non-linear differential equation for the 
magnetic modes [ 81. 

We shall consider the case of permanent-form travelling-wave solutions assuming 
the magnetic and the lattice excitations travelling at the same speed U ;  so we define 

and a’(?co) = 0. 
= x + ut. For the border conditions, we choose q(kx )  = 0, q ’ (- +cc ) - 0 ,  - a(*co> = 0 

From equations (16) and (17), we can obtain 
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and 

i v a ’ ( f )  = (J/2)[2Sa”(f) + a*”(f>IL.2(f>l + (J/2)[2/@’(f)12a(f) - a * ( W 2 ( E > I  

- [D(2S - 1) + h 1 4 5 )  + 2Dla(f)l”(E> 

- AUm[ a * (E)a”(f) I ’ 4 8 + 2Im[a* (8 a”(5) 1 CY’ ( E ) >  (19) 

where A = [2A2u/o(k - mu’)]. 
p(f)  exp[-iq(f)], we 

obtain from equation (19), after comparing real and imaginary parts, the following 
system of two non-linear differential equations: 

up’ = JS(2p’q’ + p q ” )  + (J/2)[p2(2p’q1 + pq‘l) + 2p2p1q1 ]  

Defining the real functions p( f )  and q(E) through a(f) 

- 2Ap2q’(2p’q’  + pq” )  (20) 

(21) 
+ 2Dp3 - A(6pp’2q’ + 3p 2 p I q ’I + 2p2p”q’ + p3qrr’) .  

vpq ’  = JS(p” - p q ” )  + (J/2)(p2p1’ + pp t2  + 2p3q” )  - [D(2S - 1) + h] 

The corresponding boundary conditions are now p( ?CO) = 0,  p’( iw) = 0 and we can 
integrate (20) once to obtain 

Ap2q t2  - J(S  + p2/2) q‘ + ~ / 2  = 0. (22) 

For the case where A # 0, we obtain from (21) and (22) the following equation for 
P(fh 

JSp”  - 7yp3pj2 - A p  - Bpp12 - Cp2p” - Ep3 - 2yp4p” = 0 (23) 
where we have made the definitions: A = vp/2A + JSp2/4A2 + D(2S - 1) + h; B = 
3 , ~  - J/2; C = p - J/2; E = uy/2A + JSpy/2A2 - Jp2/4A2 - 2 0 ;  y = Av(Av - .PS)/4J3S4; 
p = [PS(2S - 1) + 2Au]/4JS2. 

Now defining F(p) = pf2 we obtain from (23) 

(JS - Cp2 - 2yp4) dF(p)/dp - 2(7yp3 + Bp) F ( p )  - 2Ap - 2Ep3 = 0. (24) 

Boundary conditions and the fact that F(p) = F(-p) allow us to expand, to the 
fourth order: 

F(p) = a2p2 - a4p4. (25) 

p(f )  = v a s e c h  (%E). (26) 

Using (25) in (24) we find u2 = A/JS and a4 = -(4p + E - J)/WS; and finally: 

Using these results in (18) we find 

d f )  = -(P2/2Aa4) tanh ( G f )  sech ( G f ) .  

(SX(5))  = VB (1- P2(f)/4S) P E )  cos d f )  

(28) 

The equivalent relations for the magnetic modes are, to the third order in p: 
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Figure 1. (a)  Dependences of {&(E))  and q(5) on i ( k  = 2, U = 1, m = 1, d = 0.01 and 
h = 0.01): curve A, {S,(g)) for A = 2; Curve B, (S,(E)) for h = 1; curve C, lOq(E) for h = 2; 
curve D, lOq(E) for h = 1. (b )  Dependences of &(E))  and q(E) on U ( k  = 2, h = 1, 
m = 1, d = 0.001 and h = 0.01): curve A, ( $ ( E ) )  for U = 1.5; curve B, {S,(E)) for U = 1; 
curve C, lOq(6) for U = 1.5; curve D, lOq(6) for U = 1. 

Equations (28) and (29) describe completely the magnetic and acoustic solitary waves 
which are characterised by the five parameters k ,  U ,  A, d = D/Jand m. In the following, 
we scale energies in J, taking J = 1. 

We show first in figures l(a) and l ( b )  the dependences of @ , ( E ) )  and q(g)  on A and 
U ,  respectively. For both magnitudes the amplitude decreases with increasing A and 
increasing U ,  and a close relation between the amplitudes and widths of the coupled 
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solitary waves. We also find an upper limit for the velocity and a lower limit for the 
striction constant; between these limits, no solitary wave solutions are predicted with 
this theory. Moreover, it is possible to have small-amplitude solutions for very small 
velocities only for large coupling. Equations (26)-(28) also predict sharper and narrower 
curves for increasing h,  d and k .  

The structure of the magnetic solitary waves becomes particularly transparent in 
figure 2. The presence of a localised tilt mode in the direction of propagation should be 
noted. 

In conclusion, we have shown via the formalism of coherent states in which non- 
linear magnetic excitations in the compressible Heisenberg chain induce non-linear 
excitations of the elastic modes. This approach may be adequate for investigating the 
compressible easy-plane Heisenberg chain; the results of the first calculations dem- 
onstrate that, in the case of extreme anisotropy, no induced non-linear elastic mode is 
present. 

Acknowledgment 

This work was supported in part by a Beca Fundacion Andes. 

References 

[l] Mattis D C 1985 The Theory of Magnetism vol I1 (Berlin: Springer) 
[2] Cieplak M and Turski L A  1980 J .  Phys. C: Solid State Phys. 13 L777 
[3] Fivez J 1982 J .  Phys. C: Solid State Phys. 15 L641 
[4] Magyari E 19825. Phys. C: Solid State Phys. 15 L1159 
[5] Skrinjar M J,  Stojanovic S D and Kapor D V 19861. Phys. C: Solid State Phys. 19 5885 
[6] Ryzhov V N 1983 J .  Phys. C: Solid State Phys. 16 L1125 
[7] Skrinjar M J,  Stojanovic S D and Maskovic L D 1985 J .  Phys. C: Solid Stare Phys. 18 L525 
[8] Ferrer R 1985 Physica B 132 56 


